

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 47 (2006) 8143-8146

A mild and practical method for the regioselective synthesis of N-acylated 3,4-dihydropyrimidin-2-ones. New acyl transfer reagents

Kamaljit Singh* and Sukhdeep Singh

Organic Synthesis Laboratory, Department of Applied Chemical Sciences and Technology, Guru Nanak Dev University, Amritsar 143 005, India

> Received 21 July 2006; revised 29 August 2006; accepted 7 September 2006 Available online 2 October 2006

Abstract—The treatment of 3,4-dihydropyrimidin-2-ones with *n*-BuLi at -78 °C, followed by quenching with various electrophiles furnished N3-substituted derivatives, regioselectively. Further, N1,N3-diacyl derivatives were found to transfer N1-acyl groups to nucleophilic sites.

© 2006 Elsevier Ltd. All rights reserved.

4-Aryl-3,4-dihydropyrimidin-2-ones (Biginelli compounds, DHPMs) represent an azaheterocyclic system of remarkable pharmacological profile.¹ DHPMs are found in natural products and find applications as calcium channel modulators, α_{1a} -adrenergic receptor antagonists, mitotic kinesin inhibitors, and hepatitis B virus replication suppressors. Several marine derived natural products which are inhibitors of HIV gp-120CD4, also contain the DHPM core. Although a large number of DHPM derivatives have been prepared in single-pot Biginelli multi-component reaction (MCR), and its variants, a greater number of very interesting heterocycles have been obtained by the chemical functionalization of the six (N1, C2, N3, C4, C5 and C6) positions around the DHPM core.²

Recently, we revealed that Biginelli DHPMs can be lithiated at the C6 methyl and thus elaborated regioselectively, with a wide variety of electrophiles.³ Regioselective N3-functionalization (acylation, alkoxycarbonylation, and alkylation) of DHPMs is of considerable importance for the preparation of N3-substituted DHPMs, related to the biologically important compounds SQ 32,926 1, SQ 32,547 2, and L-771,668 3.^{1a}

A survey of the literature revealed a single example of the direct N3-acylation (DMF/POCl₃) of a C-4 arylsubstituted DHPM, where the N3-formylated product (12% yield) was attended by a 6*H*-1,3-thiazine derivative (47% yield).⁴ A rather high temperature (100–180 °C) microwave-aided acylation technique, employing polymer-supported reagents and scavengers provided an attractive method,⁵ but lacked the economy and simplicity of a one-pot reaction. In contrast to the acylation, the alkoxycarbonylation of Biginelli DHPMs with, for example, ethyl chloroformate and base has proved problematic leading to mixtures of N1 and N3 substituted products depending on the substitution pattern around the DHPM ring.⁶ Also, N3-monoalkylated DHPMs

Keywords: Biginelli compounds; Calcium channel modulators; Acyl transfer reagent.

^{*} Corresponding author. Tel.: +91 0183 2258853/2258802–09x3508; fax: +91 0183 2258819–20; e-mail: kamaljit19in@yahoo.co.in

^{0040-4039/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.09.039

Scheme 1. Synthesis of N3-acylated DHPMs.

cannot be obtained by the alkylation of unsubstituted derivatives and when monoalkyl ureas are employed, only *N*1-alkylated DHPMs are formed.⁷ Thus, a flexible, general, one-pot approach to drug-like DHPM derivatives, avoiding intricate isolation/purification techniques, is required.

In this letter, we report a one-pot and a highly efficient method that permits the rapid synthesis of N3-acylated DHPMs **5** which does not rely on the use of any sophisticated technique, but instead allows the use of a number of acylating agents. Our procedure involves a low temperature (-78 °C) lithiation of DHPMs **4** at N3, using *n*-BuLi and subsequent quenching with an acylating agent (Scheme 1).

During optimization experiments (Table 1), we noted that when the quantity of the base was greater than 1.1 equiv, the proportion of N3-acetylated DHPMs 5 decreased and, in some cases, C6,N3-diacyl derivatives were produced.⁸ Also, under the optimized reaction conditions, employing a 1.1 equiv of the base, any

N1,N3-diacyl derivative **6** formed, was converted into **5** (TLC) upon warming the reaction to room temperature. This finding suggested to us that the diacyl DHPM derivatives could be used as acyl transfer reagents.

3,4-Dihydropyrimidin-2-ones 4 were prepared according to the previously described procedures.⁹ To generate the lithio anions, a suspension of 4 in dry THF, was treated with freshly prepared *n*-BuLi (2.0 N in hexanes, 1.1 equiv) at -78 °C under an atmosphere of dry nitrogen, and then the mixture was warmed to room temperature for 0.5 h before cooling back to -78 °C. The pale yellow colored¹⁰ anions were then quenched by dropwise addition of the electrophiles (Table 2) in anhydrous THF at -78 °C. The reaction was allowed to warm to room temperature and stirred until complete (20-30 min, TLC) and then quenched with a cooled saturated solution of ammonium chloride. Some reactions (Table 2. entries 1-5 and 8-10), vielded solid products after the extractive work-up, which upon re-crystallization from DCM/hexane (1:1 v/v), furnished the corresponding pure product 5; for the remaining reactions, chromatographic purification was required. When the reaction mixtures were treated with saturated ammonium chloride solution at -78 °C, in addition to product 5, the N1, N3-diacyl derivatives 6 (Table 2) were also isolated. However, when the quenching was performed at room temperature, 5 was exclusively isolated, except entries 4, 12 and 17, where corresponding 6 accompanied the N3-acyl products, albeit in trace amounts (<5%). In order to improve the yield of 6, an alternative method employing 2.5 equiv of potassium tert-butoxide in combination with 18-crown-6 was developed. All products were characterized by ¹H NMR, ¹³C NMR, ^{MS} and elemental analysis. In order to eliminate the possibility that the diacyl compounds were N,O-diacyl derivatives, the structure of **6b** was additionally confirmed by X-ray crystal structure analysis (Fig. 1).¹¹ We believe that the regioselectivity arises from the relatively more reactive and higher proportion of the N3 anionic species, formed in situ, may produce the products of exclusive function-

Table 1. Optimization of the reaction conditions for N3-acylation of 3,4-dihydropyrimidin-2-ones

	$\begin{array}{c} \begin{array}{c} 0 \\ \text{Eto} \\ Me \end{array} \begin{array}{c} N \\ H \\ H \end{array} \begin{array}{c} (i) \\ n-BuLi /THF/-78 \\ (ii) \\ ropionyl chloride \\ THF/-78 \\ r+F/-78 \\ (iii) \\ aqueous \\ NH_4Cl \\ (4d; R' = Et \end{array}$	$\frac{C}{(1.1 \text{ equiv.})/} \rightarrow \underbrace{\text{Eto}_{Me} \stackrel{R'}{\underset{H}{\overset{N}{}}} O}_{Me} \stackrel{N}{\underset{H}{\overset{N}{}}} O$	
Entry	Equivalents of <i>n</i> -BuLi	Product	Isolated yield (%)
1	1.1	5b	90
2	1.1	5j	86
3	2.2	5b	52
4	2.2	5j	20
5	3.1	5b	43
6	3.1	5j	$0^{\rm a}~(<5\%)$
7	4.1	5b	30
8	4.1	5j	$0^{\rm a}~(<5\%)$

^a The corresponding N3,C6-diacyl derivative was obtained. Values in parentheses represent the isolated yield of N3,C6-diacyl derivatives.

Entry	4	Electrophile	Product				Isolated yields (%) 5	Mp (°C) 5
			5 ^a / 6 ^b	\mathbb{R}^1	R ²	Х		
1	4a	MeCOCl	5a	Ph	COMe	0	92	170
2	4a	EtCOCl	5b	Ph	COEt	0	90 ^c	202
3	4a	n-PrCOCl	5c	Ph	COPr-n	0	89	137
4	4a	PhCOCl	5d	Ph	COPh	0	91	151
5	4a	p-NO ₂ C ₆ H ₄ COCl	5e ^d	Ph	$COC_6H_4 - pNO_2$	0	61	141
6	4a	p-MeC ₆ H ₄ SO ₂ Cl	5f ^d	Ph	SO ₂ C ₆ H ₄ -pMe	0	55	183
7	4a	α-C ₁₀ H ₇ COCl	5g ^d	Ph	$CO-\alpha C_{10}H_7$	0	71	140
8	4b	EtCOCl	5h ^e	Ph	COEt	S	89	138
9	4c	EtCOCl	5i	4-MeOC ₆ H ₄	COEt	0	91	157
10	4d	EtCOCl	5j	Et	COEt	0	86	134
11	4e	EtCOCl	5k ^d	Н	COEt	0	75	143
12	4f	EtCOCl	51	2,4-(MeO) ₂ C ₆ H ₃	COEt	0	62	191
13	4a	ClCH ₂ COCl	5m ^d	Ph	COCH ₂ Cl	0	30	209
14	4a	ClCOCOOEt	5n ^d	Ph	COCO ₂ Et	0	69	104
15	4a	BrCH ₂ CH ₂ COCl	50 ^d	Ph	COCH=CH ₂	0	30	179
16	4a	HCOOEt	5p ^d	Ph	СНО	0	65	222
17	4a	BrCH ₂ COOEt	5q	Ph	CH ₂ COOEt ^f	0	59	140
18	4 a	MeCHBrCOOEt	$5r^{d}$	Ph	MeCHCOOEt ^{f,g}	0	62	123

Table 2. Scope of the regioselective N3-acylation of 3,4-dihydropyrimidin-2-ones

^a Method A: (i) DHPM (1.0 equiv), n-BuLi (1.1 equiv)/-78 °C; (ii) E^+ (1.1 equiv)/-78 °C to rt; (iii) aqueous NH₄Cl (rt).

^b Compounds **6a** (10%), **6b** (18%), **6c** (15%), **6d** (22%), **6i** (20%), **6j** (17%), **6l** (23%) and **6q** (7%) were formed employing *Method B*: [(i) DHPM (1.0 equiv), *n*-BuLi (1.1 equiv)/-78 °C; (ii) E^+ (1.1 equiv)/-78 °C (iii) aqueous NH₄Cl (-78 °C)] and **6b** (45%) using *Method C*: [(i) DHPM (20 mmol), KBuO' (87.5 mmol)/18-C-6 (7.5 mmol)/rt; (ii) E^+ (90 mmol)/0 °C to rt (24 h)].

^c Formed in 85% yield when propionic anhydride was used as the electrophile.

^d Corresponding **6** not formed.

^e Corresponding 6h was rapidly converted (TLC) into 5h during work-up.

^f N3-alkylated products were formed.

^g A mixture of diastereomers (6:4) was obtained. For details, see Supplementary data.

Figure 1. X-ray crystal structure of **6b** showing the stereoview of the molecule and the numbering scheme used in the structure analysis.

alization at N3. A particularly attractive feature of this method is its applicability to various electrophiles (Table 2), a feature lacking in the previous methods.^{4,5} Further, the substitution pattern around the DHPM core was not found to influence the yield of **5**.

Acyl transfer to nucleophiles is an important transformation in organic synthesis. Several enzymes, such as serine acetyl transferase¹² are involved in the direct transfer of the acyl groups between reactants in biosynthesis in bacteria and plants.

Scheme 2. Acyl transfer from N1,N3-diacyl DHPMs.

The selective monoacylation of amino groups in the presence of other functional groups has significant utility¹³ and several reagents have been developed for this purpose. We envisioned that **6** could be used to effect acyl transfers to various nucleophiles. As an example, when **4c** was treated with 1.1 equiv of *n*-BuLi and quenched with 1.0 equiv of N1,N3-disubstituted DHPM **6i/6j**, N3-substituted DHPM **5i** was obtained, exclusively, in 96–98% isolated yield (Scheme 2). These reactions demonstrate the potential of N1,N3-diacyl DHPM derivatives as acyl transfer reagents. Further investigations in determining scope and limitation of this reaction of DHPMs is under investigation.

Thus, in summary, we have developed a mild and general one-pot protocol for N3-acylation of Biginelli DHPMs, which tolerates various substituents around the DHPM nucleus. A facile acyl transfer from N1,N3-disubstituted DHPMs to give an N3-substituted DHPM has also been demonstrated.

Acknowledgements

We are thankful to the CSIR (01(1960)/04/EMR-II) and UGC (F. 31-53/2005 (SR)), New Delhi, for financial assistance, and National Single Crystal X-ray Diffraction Facility, IIT Bombay, for X-ray analysis. S.S. thanks the UGC, New Delhi, for a senior research fellowship.

Supplementary data

Experimental procedures and spectral data for all compounds are given in the supplementary data. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet. 2006.09.039.

References and notes

- (a) Kappe, C. O. *Eur. J. Med. Chem.* 2000, *35*, 1043–1052;
 (b) Rovnyak, G. C.; Atwal, K. S.; Hedberg, A.; Kimball, S. D.; Moreland, S.; Gougoutas, J. Z.; O'Reilly, B. C.; Schwartz, J.; Malley, M. F. *J. Med. Chem.* 1992, *35*, 3254–3263.
- 2. Kappe, C. O.; Dallinger, D. Pure Appl. Chem. 2005, 77, 155–161.
- Singh, K.; Singh, S.; Mahajan, A. J. Org. Chem. 2005, 70, 6114–6117.
- 4. Kappe, C. O.; Roschger, P. J. Heterocycl. Chem. 1989, 26, 55–64.
- (a) Dallinger, D.; Gorobets, N. Y.; Kappe, C. O. Org. Lett. 2003, 5, 1205–1208; (b) Dallinger, D.; Gorobets, N. Y.; Kappe, C. O. Mol. Diversity 2003, 7, 229–245.

- (a) Cho, H.; Takeuchi, Y.; Ueda, M.; Mizuno, A. *Tetrahedron Lett.* **1988**, 29, 5405–5408; (b) Atwal, K. S.; Rovnyak, G. C.; O'Reilly, B. C.; Schwartz, J. J. Org. *Chem.* **1989**, 54, 5898–5907.
- (a) Folkers, K.; Johnson, T. B. J. Am. Chem. Soc. 1934, 56, 1374–1377; (b) George, T.; Tahilramani, R.; Mehta, D. V. Synthesis 1975, 405–407.
- 8. In the case of entries 3, 9 and 10 (Table 2), when 3–4 equiv of *n*-BuLi was used, the corresponding N3,C6-diacylated products were obtained in low yields. However, entry 2 (Table 2) did not yield the corresponding N3,C6-diacylated product, and only N3-acylated product was isolated in 30% yield.
- (a) Kappe, C. O.; Stadler, A. Org. React. 2004, 63, 1–116;
 (b) Kappe, C. O. QSAR Comb. Sci. 2003, 22, 630–645; (c) Singh, K.; Singh, J.; Deb, P. K.; Singh, H. Tetrahedron 1999, 55, 12873–12880; (d) Ma, Y.; Qian, C.; Wang, L.; Yang, M. J. Org. Chem. 2000, 65, 3864–3868; (e) Singh, K.; Arora, D.; Singh, S. Tetrahedron Lett. 2006, 47, 4205–4207; (f) Singh, K.; Singh, S.; Kaur, P. Lett. Org. Chem. 2006, 3, 201–203.
- 10. In our previous investigation,³ on deprotonation of the C6 Me of DHPMs, the trianion generated using LDA was of a blood red color.
- 11. Crystallographic data for **6b** have been deposited with the Cambridge Crystallographic Data Centre (CCDC). The coordinates can be obtained on request from the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK. The CCDC Number is 614958.
- 12. Johnson, C. M.; Roderick, S. L.; Cook, P. F. Arch. Biochem. Biophys. 2005, 433, 85–95.
- (a) Jang, J. H.; Kim, H. J.; Kim, J. N.; Kim, T. H. Bull. Korean Chem. Soc. 2005, 26, 1027–1028; (b) Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis; John Wiley and Sons: New York, 1991.